博客
关于我
牛客多校第七场H(数论分块)
阅读量:256 次
发布时间:2019-03-01

本文共 733 字,大约阅读时间需要 2 分钟。

专题里面有,后悔没写,哭唧唧

#include
using namespace std;typedef long long ll;const int mod = 1e9 + 7;ll n,k;ll run(ll x){ ll j;/*i是前界,j是后界*/ ll res = 0; for(ll i = 2;i <= min(x,k);i = j + 1){ ll y = x / i; j = min(x / y,k); /*右边界大于k在同一个n/i的数量上会有变化,会多加上几个n/i 右边界是可以大于k的,而且情况还不少,所以有时候不能直观去看 */ res = (res + ((j - i + 1) * y) % mod); } return res;}int main(){ scanf("%lld%lld",&n,&k); ll sum = 0; sum += n + k - 1; //如果数论分块会加上n + n - 1 //k不一定等于n,与实际不符 sum = (sum + run(n) + run(n - 1)) % mod; printf("%lld\n",sum); return 0;}/*这道题是什么意思呢就是通过观察,我们可以知道(n,k)-->(nk,k) 第一个整数一定是第二个整数的倍数(n,k)-->(nk+1,k)令n = xk(第一个整数一定是k的倍数);1. n == xk2. n == xk + 1那么n == xk 或n - 1 == xk所以这道题就转化成了是求n / k(k = 1,2,3... )的和方法就是数论分块*/

转载地址:http://isox.baihongyu.com/

你可能感兴趣的文章
mysql Timestamp时间隔了8小时
查看>>
Mysql tinyint(1)与tinyint(4)的区别
查看>>
mysql union orderby 无效
查看>>
mysql v$session_Oracle 进程查看v$session
查看>>
mysql where中如何判断不为空
查看>>
MySQL Workbench 使用手册:从入门到精通
查看>>
mysql workbench6.3.5_MySQL Workbench
查看>>
MySQL Workbench安装教程以及菜单汉化
查看>>
MySQL Xtrabackup 安装、备份、恢复
查看>>
mysql [Err] 1436 - Thread stack overrun: 129464 bytes used of a 286720 byte stack, and 160000 bytes
查看>>
MySQL _ MySQL常用操作
查看>>
MySQL – 导出数据成csv
查看>>
MySQL —— 在CentOS9下安装MySQL
查看>>
MySQL —— 视图
查看>>
mysql 不区分大小写
查看>>
mysql 两列互转
查看>>
MySQL 中开启二进制日志(Binlog)
查看>>
MySQL 中文问题
查看>>
MySQL 中日志的面试题总结
查看>>
mysql 中的all,5分钟了解MySQL5.7中union all用法的黑科技
查看>>