博客
关于我
牛客多校第七场H(数论分块)
阅读量:256 次
发布时间:2019-03-01

本文共 733 字,大约阅读时间需要 2 分钟。

专题里面有,后悔没写,哭唧唧

#include
using namespace std;typedef long long ll;const int mod = 1e9 + 7;ll n,k;ll run(ll x){ ll j;/*i是前界,j是后界*/ ll res = 0; for(ll i = 2;i <= min(x,k);i = j + 1){ ll y = x / i; j = min(x / y,k); /*右边界大于k在同一个n/i的数量上会有变化,会多加上几个n/i 右边界是可以大于k的,而且情况还不少,所以有时候不能直观去看 */ res = (res + ((j - i + 1) * y) % mod); } return res;}int main(){ scanf("%lld%lld",&n,&k); ll sum = 0; sum += n + k - 1; //如果数论分块会加上n + n - 1 //k不一定等于n,与实际不符 sum = (sum + run(n) + run(n - 1)) % mod; printf("%lld\n",sum); return 0;}/*这道题是什么意思呢就是通过观察,我们可以知道(n,k)-->(nk,k) 第一个整数一定是第二个整数的倍数(n,k)-->(nk+1,k)令n = xk(第一个整数一定是k的倍数);1. n == xk2. n == xk + 1那么n == xk 或n - 1 == xk所以这道题就转化成了是求n / k(k = 1,2,3... )的和方法就是数论分块*/

转载地址:http://isox.baihongyu.com/

你可能感兴趣的文章
mysql之常见函数
查看>>
Mysql之性能优化--索引的使用
查看>>
mysql之旅【第一篇】
查看>>
Mysql之索引选择及优化
查看>>
mysql之联合查询UNION
查看>>
mysql之连接查询,多表连接
查看>>
mysql乐观锁总结和实践 - 青葱岁月 - ITeye博客
查看>>
mysql也能注册到eureka_SpringCloud如何向Eureka中进行注册微服务-百度经验
查看>>
mysql乱码
查看>>
Mysql事务。开启事务、脏读、不可重复读、幻读、隔离级别
查看>>
MySQL事务与锁详解
查看>>
MySQL事务原理以及MVCC详解
查看>>
MySQL事务及其特性与锁机制
查看>>
mysql事务理解
查看>>
MySQL事务详解结合MVCC机制的理解
查看>>
MySQL事务隔离级别:读未提交、读已提交、可重复读和串行
查看>>
MySQL事务隔离级别:读未提交、读已提交、可重复读和串行
查看>>
webpack css文件处理
查看>>
mysql二进制包安装和遇到的问题
查看>>
MySql二进制日志的应用及恢復
查看>>